Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.901
Filtrar
1.
Clin Auton Res ; 34(1): 45-77, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38393672

RESUMO

PURPOSE: The heart receives cervical and thoracic sympathetic contributions. Although the stellate ganglion is considered the main contributor to cardiac sympathetic innervation, the superior cervical ganglia (SCG) is used in many experimental studies. The clinical relevance of the SCG to cardiac innervation is controversial. We investigated current morphological and functional evidence as well as controversies on the contribution of the SCG to cardiac innervation. METHODS: A systematic literature review was conducted in PubMed, Embase, Web of Science, and COCHRANE Library. Included studies received a full/text review and quality appraisal. RESULTS: Seventy-six eligible studies performed between 1976 and 2023 were identified. In all species studied, morphological evidence of direct or indirect SCG contribution to cardiac innervation was found, but its contribution was limited. Morphologically, SCG sidedness may be relevant. There is indirect functional evidence that the SCG contributes to cardiac innervation as shown by its involvement in sympathetic overdrive reactions in cardiac disease states. A direct functional contribution was not found. Functional data on SCG sidedness was largely unavailable. Information about sex differences and pre- and postnatal differences was lacking. CONCLUSION: Current literature mainly supports an indirect involvement of the SCG in cardiac innervation, via other structures and plexuses or via sympathetic overdrive in response to cardiac diseases. Morphological evidence of a direct involvement was found, but its contribution seems limited. The relevance of SCG sidedness, sex, and developmental stage in health and disease remains unclear and warrants further exploration.


Assuntos
Gânglios Simpáticos , Gânglio Cervical Superior , Feminino , Humanos , Masculino , Sistema Nervoso Autônomo , Coração/inervação , Gânglio Estrelado
2.
Clin Auton Res ; 34(1): 79-97, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38403748

RESUMO

PURPOSE: We have re-evaluated the anatomical arguments that underlie the division of the spinal visceral outflow into sympathetic and parasympathetic divisions. METHODOLOGY: Using a systematic literature search, we mapped the location of catecholaminergic neurons throughout the mammalian peripheral nervous system. Subsequently, a narrative method was employed to characterize segment-dependent differences in the location of preganglionic cell bodies and the composition of white and gray rami communicantes. RESULTS AND CONCLUSION: One hundred seventy studies were included in the systematic review, providing information on 389 anatomical structures. Catecholaminergic nerve fibers are present in most spinal and all cranial nerves and ganglia, including those that are known for their parasympathetic function. Along the entire spinal autonomic outflow pathways, proximal and distal catecholaminergic cell bodies are common in the head, thoracic, and abdominal and pelvic region, which invalidates the "short-versus-long preganglionic neuron" argument. Contrary to the classically confined outflow levels T1-L2 and S2-S4, preganglionic neurons have been found in the resulting lumbar gap. Preganglionic cell bodies that are located in the intermediolateral zone of the thoracolumbar spinal cord gradually nest more ventrally within the ventral motor nuclei at the lumbar and sacral levels, and their fibers bypass the white ramus communicans and sympathetic trunk to emerge directly from the spinal roots. Bypassing the sympathetic trunk, therefore, is not exclusive for the sacral outflow. We conclude that the autonomic outflow displays a conserved architecture along the entire spinal axis, and that the perceived differences in the anatomy of the autonomic thoracolumbar and sacral outflow are quantitative.


Assuntos
Neurônios , Sistema Nervoso Simpático , Animais , Humanos , Neurônios/fisiologia , Sistema Nervoso Simpático/fisiologia , Gânglios Simpáticos , Medula Espinal , Sacro , Mamíferos
3.
Brain Res ; 1829: 148809, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354998

RESUMO

The sympathetic ganglia represent a final motor pathway that mediates homeostatic "fight and flight" responses in the visceral organs. Satellite glial cells (SGCs) form a thin envelope close to the neuronal cell body and synapses in the sympathetic ganglia. This unique morphological feature suggests that neurons and SGCs form functional units for regulation of sympathetic output. In the present study, we addressed whether SGC-specific markers undergo age-dependent changes in the postnatal development of rat sympathetic ganglia. We found that fatty acid-binding protein 7 (FABP7) is an early SGC marker, whereas the S100B calcium-binding protein, inwardly rectifying potassium channel, Kir4.1 and small conductance calcium-activated potassium channel, SK3 are late SGC markers in the postnatal development of sympathetic ganglia. Unlike in sensory ganglia, FABP7 + SGC was barely detectable in adult sympathetic ganglia. The expression of connexin 43, a gap junction channel gradually increased with age, although it was detected in both SGCs and neurons in sympathetic ganglia. Glutamine synthetase was expressed in sensory, but not sympathetic SGCs. Unexpectedly, the sympathetic SGCs expressed a water-selective channel, aquaporin 1 instead of aquaporin 4, a pan-glial marker. However, aquaporin 1 was not detected in the SGCs encircling large neurons. Nerve injury and inflammation induced the upregulation of glial fibrillary acidic protein, suggesting that this protein is a hall marker of glial activation in the sympathetic ganglia. In conclusion, our findings provide basic information on the in vivo profiles of specific markers for identifying sympathetic SGCs at different stages of postnatal development in both healthy and diseased states.


Assuntos
Neuroglia , Células Satélites Perineuronais , Ratos , Animais , Células Satélites Perineuronais/metabolismo , Neuroglia/metabolismo , Gânglios Simpáticos , Neurônios , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Gânglios Espinais/metabolismo
4.
Int. j. morphol ; 42(1): 59-64, feb. 2024. tab
Artigo em Espanhol | LILACS | ID: biblio-1528831

RESUMO

Las terminologías son utilizadas como instrumento lingüístico que permite la transmisión de conocimiento de manera precisa y sin ambigüedades en el ámbito de las ciencias. Los lineamientos de la Federative International Programme for Anatomical Terminology (FIPAT) refieren que la denominación de nombres estructurales debe ser descriptivos e informativos. Este estudio analiza las raíces lingüísticas que componen el término Neuron parvum valde fluorescens vigente en Terminologia Histologica y el término Neuron parvum fluorescens vigente en Terminologia Neuroanatomica. Las células pequeñas intensamente fluorescentes son neuronas que se encuentran en el sistema nervioso autónomo, distribuidas en los ganglios simpáticos. Estas células presentan sinapsis aferentes con terminales nerviosas simpáticas preganglionares y sinapsis eferentes con las dendritas de las neuronas posganglionares. Su función es regular la transmisión ganglionar, actuando como interneuronas con señalización paracrina y endocrina. Además, se caracterizan por ser células fluorescentes, que expresan catecolaminas; serotonina, noradrenalina y dopamina. Se realizó una búsqueda en Terminologia Histologica y Terminologia Neuroanatomica, con una traducción de los términos al español. Además, la búsqueda se complementó en un diccionario etimológico en inglés para los términos correspondientes. Esta investigación encontró diferencia entre la traducción del latín al español del término fluorescens, quien posee un origen etimológico muy diferente a su significado en español. El término Neuron parvum valde fluorescens en Terminologia Histologica y el término Neuron parvum fluorescens en Terminologia Neuroanatomica, identifican a la misma estructura. Se sugiere reemplazar ambos términos por Cateconeuron ganglionare, entregando así una correcta descripción de este tipo de neurona, considerando su ubicación y función. Además, de esta manera ser un término concordante en latín para su incorporación en Terminologia Neuroanatomica y Terminologia Histologica.


SUMMARY: Terminologies are used as a linguistic tool to convey knowledge in a precise and unambiguous manner in science. The guidelines of the Federative International Programme for Anatomical Terminology (FIPAT) state that the names given to structures should be both descriptive and informative. This study analyses the linguistic roots of the term Neuron parvum valde fluorescens in Terminologia Histologica and the term Neuron parvum fluorescens in Terminologia Neuroanatomica. Small intensely fluorescent cells are neurons found in the autonomic nervous system, distributed in the sympathetic ganglia, they have afferent synapses with preganglionic sympathetic nerve terminals and efferent synapses with the dendrites of postganglionic neurons, whose function is to regulate ganglionic transmission, acting as interneurons with paracrine and endocrine signalling. They are also characterized as fluorescent cells, producing the catecholamines: serotonin, noradrenaline and dopamine. A search was carried out in Terminologia Histologica and Terminologia Neuroanatomica, with a translation of the terms into Spanish. This was complemented by a search in an English etymological dictionary for the corresponding terms. This research found a difference between the Latin to English translation of the term fluorescens, which has a very different etymological origin to its English meaning. The term Neuron parvum valde fluorescens in Terminologia Histologica and the term Neuron parvum fluorescens in Terminologia Neuroanatomica identify the same structure. The proposal is to replace both terms with Cateconeuron ganglionare, thus affording an accurate description of this type of neuron, considering its location and function. Moreover, it would also be a concordant term in Latin for its incorporation into the Terminologia Neuroanatomica and Terminologia Histologica.


Assuntos
Humanos , Gânglios Simpáticos/citologia , Histologia , Neuroanatomia , Terminologia como Assunto
5.
J Comp Neurol ; 532(2): e25563, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37986234

RESUMO

Following peripheral nerve injury, postganglionic sympathetic axons sprout into the affected sensory ganglia and form perineuronal sympathetic plexuses with somata of sensory neurons. This sympathosensory coupling contributes to the onset and persistence of injury-induced chronic pain. We have documented the presence of similar sympathetic plexuses in the trigeminal ganglia of adult mice that ectopically overexpress nerve growth factor (NGF), in the absence of nerve injury. In this study, we sought to further define the phenotype(s) of these trigeminal sensory neurons having sympathetic plexuses in our transgenic mice. Using quantitative immunofluorescence staining analyses, we show that the invading sympathetic axons specifically target sensory somata immunopositive for several biomarkers: NGF high-affinity receptor tyrosine kinase A (trkA), calcitonin gene-related peptide (CGRP), neurofilament heavy chain (NFH), and P2X purinoceptor 3 (P2X3). Based on these phenotypic characteristics, the majority of the sensory somata surrounded by sympathetic plexuses are likely to be NGF-responsive nociceptors (i.e., trkA expressing) that are peptidergic (i.e., CGRP expressing), myelinated (i.e., NFH expressing), and ATP sensitive (i.e., P2X3 expressing). Our data also show that very few sympathetic plexuses surround sensory somata expressing other nociceptive (pain) biomarkers, including substance P and acid-sensing ion channel 3. No sympathetic plexuses are associated with sensory somata that display isolectin B4 binding. Though the cellular mechanisms that trigger the formation of sympathetic plexus (with and without nerve injury) remain unknown, our new observations yield an unexpected specificity with which invading sympathetic axons appear to target a precise subtype of nociceptors. This selectivity likely contributes to pain development and maintenance associated with sympathosensory coupling.


Assuntos
Fator de Crescimento Neural , Gânglio Trigeminal , Camundongos , Animais , Camundongos Transgênicos , Gânglio Trigeminal/metabolismo , Fator de Crescimento Neural/análise , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Neurônios Aferentes/fisiologia , Células Receptoras Sensoriais/metabolismo , Dor/metabolismo , Fenótipo , Biomarcadores/análise , Gânglios Simpáticos/metabolismo
6.
Basic Res Cardiol ; 119(1): 57-74, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151579

RESUMO

Cardiac sympathetic overactivation is a critical driver in the progression of acute myocardial infarction (AMI). The left middle cervical ganglion (LMCG) is an important extracardiac sympathetic ganglion. However, the regulatory effects of LMCG on AMI have not yet been fully documented. In the present study, we detected that the LMCG was innervated by abundant sympathetic components and exerted an excitatory effect on the cardiac sympathetic nervous system in response to stimulation. In canine models of AMI, targeted ablation of LMCG reduced the sympathetic indexes of heart rate variability and serum norepinephrine, resulting in suppressed cardiac sympathetic activity. Moreover, LMCG ablation could improve ventricular electrophysiological stability, evidenced by the prolonged ventricular effective refractory period, elevated action potential duration, increased ventricular fibrillation threshold, and enhanced connexin43 expression, consequently showing antiarrhythmic effects. Additionally, compared with the control group, myocardial infarction size, circulating cardiac troponin I, and myocardial apoptosis were significantly reduced, accompanied by preserved cardiac function in canines subjected to LMCG ablation. Finally, we performed the left stellate ganglion (LSG) ablation and compared its effects with LMCG destruction. The results indicated that LMCG ablation prevented ventricular electrophysiological instability, cardiac sympathetic activation, and AMI-induced ventricular arrhythmias with similar efficiency as LSG denervation. In conclusion, this study demonstrated that LMCG ablation suppressed cardiac sympathetic activity, stabilized ventricular electrophysiological properties and mitigated cardiomyocyte death, resultantly preventing ischemia-induced ventricular arrhythmias, myocardial injury, and cardiac dysfunction. Neuromodulation therapy targeting LMCG represented a promising strategy for the treatment of AMI.


Assuntos
Infarto do Miocárdio , Animais , Cães , Arritmias Cardíacas , Coração/inervação , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/prevenção & controle , Gânglios Simpáticos/metabolismo
7.
J Clin Hypertens (Greenwich) ; 25(9): 853-860, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559357

RESUMO

The celiac ganglion (CG) is associated with the sympathetic nervous system (SNS) and plays an important role in the pathogenesis of hypertension. The characteristics of the CG in patients with hypertension remain unknown. The aim of our study was to explore the differences in celiac ganglia (CGs) characteristics between hypertensive and non-hypertensive populations using computed tomography (CT). CGs manifestations on multidetector row CT in 1003 patients with and without hypertension were retrospectively analyzed. The morphological characteristics and CT values of the left CGs were recorded. The CT values of the ipsilateral adrenal gland (AG) and crus of the diaphragm (CD) were also measured. The left CG was located between the left AG and CD, and most CGs were long strips. The frequency of visualization of the left CGs was higher in the hypertension group than in the non-hypertension group (p < .05). There were no significant differences in the maximum diameter, size, and shape ratio of the left CGs between the two groups (p > .05). Except for the left CG in the arterial phase, the CT values of the left CG and AG in the non-hypertensive group were higher than those in the hypertension group (p < .05). The venous phase enhancement of the left CG in the non-hypertension group was significantly higher than that in the hypertension group (p < .05). Our findings reveal that CGs have characteristic manifestations in the hypertensive population. As important targets of the SNS, CGs have the potential to regulate blood pressure.


Assuntos
Hipertensão , Humanos , Hipertensão/complicações , Hipertensão/diagnóstico por imagem , Hipertensão/epidemiologia , Estudos Retrospectivos , Gânglios Simpáticos/diagnóstico por imagem , Sistema Nervoso Simpático , Tomografia Computadorizada por Raios X
8.
J Neuroendocrinol ; 35(8): e13313, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37404042

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is an important regulator of the stress response in mammals, influencing both the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). PACAP has been reported to influence energy homeostasis, including adaptive thermogenesis, an energy burning process in adipose tissue regulated by the SNS in response to cold stress and overfeeding. While research suggests PACAP acts centrally at the level of the hypothalamus, knowledge of PACAP's role within the sympathetic nerves innervating adipose tissues in response to metabolic stressors is limited. This work shows, for the first time, gene expression of PACAP receptors in stellate ganglia and highlights some differential expression with housing temperature. Additionally, we present our dissection protocol, analysis of tyrosine hydroxylase gene expression as a molecular biomarker for catecholamine producing tissue and recommend three stable reference genes for the normalization of quantitative real time-polymerase chain reaction (qRT-PCR) data when working with this tissue. This study adds to information about neuropeptide receptor expression in peripheral ganglia of the sympathetic nervous system innervating adipose tissue and provides insight into PACAP's role in the regulation of energy metabolism.


Assuntos
Sistema Nervoso Autônomo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Camundongos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Sistema Nervoso Autônomo/metabolismo , Gânglios Simpáticos/metabolismo , Sistema Nervoso Simpático/metabolismo , Expressão Gênica , Tecido Adiposo/metabolismo , Mamíferos
10.
Hypertens Res ; 46(7): 1771-1781, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37173429

RESUMO

The efficacy of renal denervation in the treatment of resistant hypertension has been controversial, and new strategies for its therapy are urgently needed. We performed the celiac ganglia neurolysis (CGN) or sham surgery on both spontaneously hypertensive rat (SHR) and Dahl salt-sensitive rat models of hypertension. Following CGN surgery in both strains, systolic blood pressure, diastolic blood pressure and mean arterial pressure were all lower than the levels in the respective sham surgery rats, which were maintained until the end of the study, 18 weeks postoperatively in SHRs and 12 weeks postoperatively in Dahl rats. CGN therapy destroyed ganglion cell structure and significantly inhibited celiac ganglia nerve viability. Four and twelve weeks after CGN, the plasma renin, angiotensin II and aldosterone levels were markedly attenuated, and the nitric oxide content was significantly increased in the CGN group compared with the respective sham surgery rats. However, CGN did not result in statistical difference in malondialdehyde levels compared with sham surgery in both strains. The CGN has efficacy in reducing high blood pressure and may be an alternative for resistant hypertension. Minimally invasive endoscopic ultrasound-guided celiac ganglia neurolysis (EUS-CGN) and percutaneous CGN are safe and convenient treatment approaches. Moreover, for hypertensive patients who need surgery due to abdominal disease or pain relief from pancreatic cancer, intraoperative CGN or EUS-CGN will be a good choice for hypertension therapy. The graphical abstract of antihypertensive effect of CGN.


Assuntos
Hipertensão , Neoplasias Pancreáticas , Ratos , Animais , Ratos Endogâmicos Dahl , Gânglios Simpáticos , Neoplasias Pancreáticas/terapia , Rim , Ratos Endogâmicos SHR , Pressão Sanguínea
11.
Biomolecules ; 13(4)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37189459

RESUMO

Hepatic ischemia-reperfusion injury (HIRI) significantly contributes to liver dysfunction following liver transplantation and hepatectomy. However, the role of the celiac ganglion (CG) in HIRI remains unclear. Adeno-associated virus was used to silence Bmal1 expression in the CG of twelve beagles that were randomly assigned to the Bmal1 knockdown group (KO-Bmal1) and the control group. After four weeks, a canine HIRI model was established, and CG, liver tissue, and serum samples were collected for analysis. The virus significantly downregulated Bmal1 expression in the CG. Immunofluorescence staining confirmed a lower proportion of c-fos+ and NGF+ neurons in TH+ cells in the KO-Bmal1 group than in the control group. The KO-Bmal1 group exhibited lower Suzuki scores and serum ALT and AST levels than the control group. Bmal1 knockdown significantly reduced liver fat reserve, hepatocyte apoptosis, and liver fibrosis, and it increased liver glycogen accumulation. We also observed that Bmal1 downregulation inhibited the hepatic neurotransmitter norepinephrine, neuropeptide Y levels, and sympathetic nerve activity in HIRI. Finally, we confirmed that decreased Bmal1 expression in CG reduces TNF-α, IL-1ß, and MDA levels and increases GSH levels in the liver. The downregulation of Bmal1 expression in CG suppresses neural activity and improves hepatocyte injury in the beagle model after HIRI.


Assuntos
Fígado , Traumatismo por Reperfusão , Animais , Cães , Regulação para Baixo , Fígado/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Hepatócitos/metabolismo , Apoptose , Gânglios Simpáticos/metabolismo
13.
Clin Auton Res ; 33(2): 111-120, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37017809

RESUMO

PURPOSE: The results and side effects of sympathicotomy for primary palmar hyperhidrosis (PPH) can vary due to anatomical variations of the sympathetic ganglions. The aim of our study was to clarify anatomical variations of the sympathetic ganglions by near-infrared (NIR) thoracoscopy and determine their effects on sympathicotomy for PPH. METHODS: The cases of 695 consecutive patients with PPH treated with either R3 or R4 sympathicotomy either by normal thoracoscopy or by NIR fluorescent thoracoscopy between March 2015 and June 2021 were retrospectively reviewed and followed up. RESULTS: The variation rate of third and fourth ganglions was 14.7% and 13.3% on the right side and 8.3% and 11.1% on the left side. Real T3 sympathicotomy (RTS3) was more effective than real T4 sympathicotomy (RTS4) in the short-term and long-term follow-up (p < 0.001 and p < 0.001, respectively). RTS3 was more satisfactory than RTS4 in the long-term follow-up (p = 0.03), but no significant difference was found in the short-term follow-up (p = 0.24). The incidence and severity of compensatory hyperhidrosis (CH) in the areas of the chest and back in the RTS4 group were significantly lower than those in the RTS3 group according to both the short-term results (12.92% vs. 26.19%, p < 0.001; 17.97% vs. 33.33%, p = 0.002, respectively) and the long-term results (19.66% vs. 28.57%, p = 0.017; 21.35% vs. 34.52%, p < 0.001, respectively). CONCLUSIONS: RTS3 may be more effective than RTS4 for PPH. However, RTS4 appears to be associated with a lower incidence and severity of CH in the areas of the chest and back than RTS3. NIR intraoperative imaging of thoracic sympathetic ganglions may improve the quality of sympathicotomy surgeries.


Assuntos
Hiperidrose , Simpatectomia , Humanos , Resultado do Tratamento , Simpatectomia/efeitos adversos , Simpatectomia/métodos , Estudos Retrospectivos , Hiperidrose/cirurgia , Hiperidrose/etiologia , Gânglios Simpáticos/cirurgia , Toracoscopia/métodos
14.
Neurochem Res ; 48(8): 2350-2359, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36947308

RESUMO

Sympathetic axonal sprouting into dorsal root ganglia is a major phenomenon implicated in neuropathic pain, and sympathetic ganglia blockage may relieve some intractable chronic pain in animal pain models and clinical conditions. These suggest that sympathetic ganglia participated in the maintenance of chronic pain. However, the molecular mechanism underlying sympathetic ganglia-mediated chronic pain is not clear. Here, we found that spared nerve injury treatment upregulated the expression of ADAMTS4 and AP-2α protein and mRNA in the noradrenergic neurons of sympathetic ganglia during neuropathic pain maintenance. Knockdown the ADAMTS4 or AP-2α by injecting specific retro scAAV-TH (Tyrosine Hydroxylase)-shRNA ameliorated the mechanical allodynia induced by spared nerve injury on day 21 and 28. Furthermore, chromatin immunoprecipitation and coimmunoprecipitation assays found that spared nerve injury increased the recruitment of AP-2α to the ADAMTS4 gene promoter, the interaction between AP-2α and histone acetyltransferase p300 and the histone H4 acetylation on day 28. Finally, knockdown the AP-2α reduced the acetylation of H4 on the promoter region of ADAMTS4 gene and suppressed the increase of ADAMTS4 expression induced by spared nerve injury. Together, these results suggested that the enhanced interaction between AP-2α and p300 mediated the epigenetic upregulation of ADAMTS4 in sympathetic ganglia noradrenergic neurons, which contributed to the maintenance of spared nerve injury induced neuropathic pain.


Assuntos
Dor Crônica , Neuralgia , Traumatismos do Sistema Nervoso , Ratos , Animais , Regulação para Cima , Dor Crônica/metabolismo , Ratos Sprague-Dawley , Neuralgia/genética , Neuralgia/metabolismo , Gânglios Simpáticos , Gânglios Espinais/metabolismo , Traumatismos do Sistema Nervoso/metabolismo , Epigênese Genética
15.
Somatosens Mot Res ; 40(3): 97-102, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36891582

RESUMO

INTRODUCTION: Although it is well known that ganglion impar block (GIB) reduces pain in the short term in patients with chronic coccygodynia, there are insufficient data on long-term treatment outcomes. The aim of this study was to examine the long-term outcomes of patients who underwent GIB for chronic coccygodynia and possible factors that might affect these outcomes. METHODS: The pre-treatment, 1st-hour, and 3rd-week numeric rating scale (NRS) scores of patients who underwent GIB 36-119 (min-max) months ago (between November 2011 and October 2018) due to coccygodynia were obtained from the medical records. Final NRS scores and presence of factors that may affect success such as accompanying low back pain (LBP) were questioned via telephone interviews. Treatment success was defined as a 50% or more reduction in final NRS scores compared with pre-treatment NRS scores. RESULTS: Telephone interviews were made with 70 patients. Treatment success was achieved in 55.7% of the patients. The patients were divided into two groups as those who achieved treatment success (group A) and those who could not (group B) and were compared. The NRS scores at the 3rd week and the number of patients with LBP in the group B were significantly higher than the group A. No serious complications developed in any patients. CONCLUSION: In patients with chronic coccygodynia, GIB is an effective and safe treatment option for pain reduction in the long term. Accompanying LBP and high pain scores in the 3rd week after injection should be considered as parameters that negatively affect long-term treatment success.


Assuntos
Dor Lombar , Humanos , Seguimentos , Resultado do Tratamento , Gânglios Simpáticos , Região Sacrococcígea
16.
J Physiol ; 601(7): 1247-1264, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36797985

RESUMO

The sympathetic nervous system vitally regulates autonomic functions, including cardiac activity. Postganglionic neurons of the sympathetic chain ganglia relay signals from the central nervous system to autonomic peripheral targets. Disrupting this flow of information often dysregulates organ function and leads to poor health outcomes. Despite the importance of these sympathetic neurons, fundamental aspects of the neurocircuitry within peripheral ganglia remain poorly understood. Conventionally, simple monosynaptic cholinergic pathways from preganglionic neurons are thought to activate postganglionic sympathetic neurons. However, early studies suggested more complex neurocircuits may be present within sympathetic ganglia. The present study recorded synaptic responses in sympathetic stellate ganglia neurons following electrical activation of the pre- and postganglionic nerve trunks and used genetic strategies to assess the presence of collateral projections between postganglionic neurons of the stellate ganglia. Orthograde activation of the preganglionic nerve trunk, T-2, uncovered high jitter synaptic latencies consistent with polysynaptic connections. Pharmacological inhibition of nicotinic acetylcholine receptors with hexamethonium blocked all synaptic events. To confirm that high jitter, polysynaptic events were due to the presence of cholinergic collaterals from postganglionic neurons within the stellate ganglion, we knocked out choline acetyltransferase in adult noradrenergic neurons. This genetic knockout eliminated orthograde high jitter synaptic events and EPSCs evoked by retrograde activation. These findings suggest that cholinergic collateral projections arise from noradrenergic neurons within sympathetic ganglia. Identifying the contributions of collateral excitation to normal physiology and pathophysiology is an important area of future study and may offer novel therapeutic targets for the treatment of autonomic imbalance. KEY POINTS: Electrical stimulation of a preganglionic nerve trunk evoked fast synaptic transmission in stellate ganglion neurons with low and high jitter latencies. Retrograde stimulation of a postganglionic nerve trunk evoked direct, all-or-none action currents and delayed nicotinic EPSCs indistinguishable from orthogradely-evoked EPSCs in stellate neurons. Nicotinic acetylcholine receptor blockade prevented all spontaneous and evoked synaptic activity. Knockout of acetylcholine production in noradrenergic neurons eliminated all retrogradely-evoked EPSCs but did not change retrograde action currents, indicating that noradrenergic neurons have cholinergic collaterals connecting neurons within the stellate ganglion.


Assuntos
Neurônios Adrenérgicos , Camundongos , Animais , Camundongos Knockout , Sistema Nervoso Simpático/fisiologia , Gânglios Simpáticos/fisiologia , Colinérgicos
17.
PLoS One ; 18(2): e0281486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795650

RESUMO

Sympathetic neurons and endocrine chromaffin cells of the adrenal medulla are catecholaminergic cells that derive from the neural crest. According to the classic model, they develop from a common sympathoadrenal (SA) progenitor that has the ability to differentiate into both sympathetic neurons and chromaffin cells depending on signals provided by their final environment. Our previous data revealed that a single premigratory neural crest cell can give rise to both sympathetic neurons and chromaffin cells, indicating that the fate decision between these cell types occurs after delamination. A more recent study demonstrated that at least half of chromaffin cells arise from a later contribution by Schwann cell precursors. Since Notch signalling is known to be implicated in the regulation of cell fate decisions, we investigated the early role of Notch signalling in regulating the development of neuronal and non-neuronal SA cells within sympathetic ganglia and the adrenal gland. To this end, we implemented both gain and loss of function approaches. Electroporation of premigratory neural crest cells with plasmids encoding Notch inhibitors revealed an elevation in the number of SA cells expressing the catecholaminergic enzyme tyrosine-hydroxylase, with a concomitant reduction in the number of cells expressing the glial marker P0 in both sympathetic ganglia and adrenal gland. As expected, gain of Notch function had the opposite effect. Numbers of neuronal and non-neuronal SA cells were affected differently by Notch inhibition depending on the time of its onset. Together our data show that Notch signalling can regulate the ratio of glial cells, neuronal SA cells and nonneuronal SA cells in both sympathetic ganglia and the adrenal gland.


Assuntos
Medula Suprarrenal , Células Cromafins , Gânglios Simpáticos , Glândulas Suprarrenais , Diferenciação Celular/fisiologia , Neuroglia , Crista Neural
18.
Dev Dyn ; 252(8): 1130-1142, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36840366

RESUMO

BACKGROUND: The molecular identification of neural progenitor cell populations that connect to establish the sympathetic nervous system (SNS) remains unclear. This is due to technical limitations in the acquisition and spatial mapping of molecular information to tissue architecture. RESULTS: To address this, we applied Slide-seq spatial transcriptomics to intact fresh frozen chick trunk tissue transversely cryo-sectioned at the developmental stage prior to SNS formation. In parallel, we performed age- and location-matched single cell (sc) RNA-seq and 10× Genomics Visium to inform our analysis. Downstream bioinformatic analyses led to the unique molecular identification of neural progenitor cells within the peripheral sympathetic ganglia (SG) and spinal cord preganglionic neurons (PGNs). We then successfully applied the HiPlex RNAscope fluorescence in situ hybridization and multispectral confocal microscopy to visualize 12 gene targets in stage-, age- and location-matched chick trunk tissue sections. CONCLUSIONS: Together, these data demonstrate a robust strategy to acquire and integrate single cell and spatial transcriptomic information, resulting in improved resolution of molecular heterogeneities in complex neural tissue architectures. Successful application of this strategy to the developing SNS provides a roadmap for functional studies of neural connectivity and platform to address complex questions in neural development and regeneration.


Assuntos
Sistema Nervoso Simpático , Transcriptoma , Animais , RNA Mensageiro , Hibridização in Situ Fluorescente , Gânglios Simpáticos , Galinhas
19.
Clin Anat ; 36(3): 550-562, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36692348

RESUMO

Current advances in management of the cardiac neuroaxis in different cardiovascular diseases require a deeper knowledge of cardiac neuroanatomy. The aim of the study was to increase knowledge of the human fetal extrinsic cardiac nervous system. We achieved this by systematizing the origin and formation of the cardiac nerves, branches, and ganglia and their sympathetic/parasympathetic connections. Thirty human fetuses (60 sides) were subjected to detailed sub-macroscopic dissection of the cervical and thoracic regions. Cardiac accessory ganglia lying on a cardiac nerve or in conjunction with two or more (up to four) nerves before entering the mediastinal cardiac plexus were observed in 13 sides. Except for the superior cardiac nerve, the sympathetic cardiac nerves were individually variable and inconstant. In contrast, the cardiac branches of the vagus nerve appeared grossly more constant and invariable, although the individual cardiac branches varied in number and position of origin. Each cervical cardiac nerve or cardiac branch of the vagus nerve could be singular or multiple (up to six) and originated from the sympathetic trunk or the vagus nerve by one, two, or three roots. Sympathetic nerves arose from the cervical-thoracic ganglia or the interganglionic segment of the sympathetic trunk. Connections were found outside the cardiac plexus. Some cardiac nerves were connected to non-cardiac nerves, while others were connected to each other. Common sympathetic/parasympathetic cardiac nerve trunks were more frequent on right (70%) versus left sides (20%). The origin, frequency, and connections of the cardiac nerves and branches are highly variable in the fetus. Detailed knowledge of the normal neuroanatomy of the heart could be useful during cardiac neuromodulation procedures and in better understanding nervous pathologies of the heart.


Assuntos
Coração , Sistema Nervoso Simpático , Humanos , Sistema Nervoso Simpático/anatomia & histologia , Gânglios Simpáticos/anatomia & histologia , Nervo Vago/anatomia & histologia , Gânglios
20.
J Ovarian Res ; 16(1): 25, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707870

RESUMO

BACKGROUND: In the rat, studies have shown that ovary innervation arrives via the superior ovarian nerve (SON) and the ovarian plexus nerve, which originates from the celiac plexus (CP). In the present study, we performed a neuroanatomical technique to investigate the anatomy of the SON between the ovary and the CP. RESULTS: We found that the SON fibers were concentrated on the lateral border of the suprarenal ganglion and projected towards, then inserted into the suspensory ligament. Then, it ran parallel to the long axis of the ligament to reach and innervate the ovaries. At this level, the SON was composed of two coiled nerve fibers, each between 10 and 15 µm in diameter. The SON was linked to three different ganglia: the suprarenal ganglia, the celiac ganglia, and the superior mesenteric ganglion. CONCLUSIONS: The postganglionic fibers that project to the ovary via the SON emerge from the suprarenal ganglia. The trajectories on the right and left sides to each ovary are similar. The somas of ipsilateral and contralateral SON neurons are located in the prevertebral ganglia, mostly in the celiac ganglia.


Assuntos
Neurônios , Ovário , Feminino , Ratos , Animais , Ovário/metabolismo , Gânglios Simpáticos/anatomia & histologia , Gânglios Simpáticos/fisiologia , Abdome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...